Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis.
نویسندگان
چکیده
The nonlinear properties of spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals remain unexplored. We test the hypothesis that complexity of BOLD activity is reduced with aging and is correlated with cognitive performance in the elderly. A total of 99 normal older and 56 younger male subjects were included. Cognitive function was assessed using Cognitive Abilities Screening Instrument and Wechsler Digit Span Task. We employed a complexity measure, multiscale entropy (MSE) analysis, and investigated appropriate parameters for MSE calculation from relatively short BOLD signals. We then compared the complexity of BOLD signals between the younger and older groups, and examined the correlation between cognitive test scores and complexity of BOLD signals in various brain regions. Compared with the younger group, older subjects had the most significant reductions in MSE of BOLD signals in posterior cingulate gyrus and hippocampal cortex. For older subjects, MSE of BOLD signals from default mode network areas, including hippocampal cortex, cingulate cortex, superior and middle frontal gyrus, and middle temporal gyrus, were found to be positively correlated with major cognitive functions, such as attention, orientation, short-term memory, mental manipulation, and language. MSE from subcortical regions, such as amygdala and putamen, were found to be positively correlated with abstract thinking and list-generating fluency, respectively. Our findings confirmed the hypothesis that complexity of BOLD activity was correlated with aging and cognitive performance based on MSE analysis, and may provide insights on how dynamics of spontaneous brain activity relates to aging and cognitive function in specific brain regions.
منابع مشابه
Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome
Although often ignored in fMRI studies, moment-to-moment variability of blood oxygenation level dependent (BOLD) signals reveals important information about brain function. Indeed, higher brain signal variability has been associated with better cognitive performance in young adults compared to children and elderly adults. Functional connectivity, a very common approach in resting-state fMRI ana...
متن کاملNetwork complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less...
متن کاملHow default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations.
The default mode of brain function hypothesis and the presence of spontaneous intrinsic low-frequency signal fluctuations during rest have recently attracted attention in the neuroscience community. In this study we asked two questions: First, is it possible to attenuate intrinsic activity in the self-referential, default mode of brain function by directing the brains resources to a goal-orient...
متن کاملPhysical Activity and Cognitive Function in the Elderly Population
Background: Old age is accompanied by impaired musculoskeletal and nervous system, which may result in low mobility and cognitive problems. This study aims to evaluate the relationship between Physical Activity (PA) and Cognitive Function (CF) among the elderly population. Objectives: ?? Materials & Methods: This is a descriptive cross-sectional study conducted on 200 old people who were memb...
متن کاملFiring Pattern of Default Mode Brain Network with Spiking Neuron Model
Recently, analyses of fMRI data have revealed functionally connected and interacting spontaneous active regions in the brain, which are referred as ”Default Mode Brain Network”. The fluctuations on BOLD signals of the default mode brain network have shown spatiotemporally correlated synchronization at a rate lower than 0.1 Hz in contrast to signals under concrete tasks like high frequency rhyth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of aging
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2013